_
_
α
\Box
_
α
\Box
N
0
α
ψ.
7
_
Ω
7
3
`
3
1
≥
-
~
_
Ω
-
-
4

STUDY MODULE DESCRIPTION FORM					
Name of the module/subject Electromagnetic Field Theory		Code 1010321231010323393			
Field of study Electrical Engineering	Profile of study (general academic, practical) (brak)	Year /Semester 2 / 3			
Elective path/specialty	Subject offered in: polish	Course (compulsory, elective) obligatory			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	full-time				
No. of hours Lecture: 2 Classes: 1 Laboratory: 1	Project/seminars:	No. of credits 6			
Status of the course in the study program (Basic, major, other) (brak)	(university-wide, from another fie	eld) brak)			
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		6 100%			
Technical sciences	6 100%				

Responsible for subject / lecturer:

prof. dr hab. inż. Wojciech Machczyński email: wojciech.machczynski@put.poznan.pl tel. 616652383 Wydział Elektryczny Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of physics, mathematics and electrical engineering.
2	Skills	Differential and integral calculus, vector analysis, fundamentals of electromagnetism, basic electrical circuit theory.
3	Social competencies	The students is aware of the need to expand their knowledge and to understand the need for collaboration within the group.

Assumptions and objectives of the course:

Understanding the physical quantities and laws of the electromagnetic field in forms integral. Knowledge of analytical methods for calculating fields.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Should be able to formulate the basic laws of electromagnetism, to distinguish the size of describing the electromagnetic field, identify the material properties for various types of electromagnetic fields. [K_W01+, K_W06+++]
- 2. Should be able to identify the status of the long line, its properties, parameters and calculate the level of voltages and currents depending on the signal propagation. [K_W04++]

Skills:

- 1. Can use Maxwell [K_U05++, K_U10+]
- 2. Can interpret the states of the long line, its properties, parameters, calculate the values of voltages and currents depending on the signal propagation. $-[K_U02++, K_U10++]$

Social competencies:

1. Ability to work in a team, willingness to comply with the principles of teamwork, attention to improving their own competence. - [K_K02+, K_K03++]

Assessment methods of study outcomes

Faculty of Electrical Engineering

Lecture:

- assess the knowledge and skills listed on the written exam of a problematic.

Exercises auditorium:

- tests and tests in writing (colloquia: 7, 14 week semester),
- keep rewarding activity and creativity in solving the set tasks.

Laboratory:

- test and favoring knowledge necessary for the accomplishment of problems in the area of laboratory tasks,
- continuous evaluation for each course rewarding gain skills they met the principles and methods
- assessment of knowledge and skills related to the implementation of the tasks your practice, the assessment report performed exercise
- rewarding ability to work in a team practice performing the task detailed in the laboratory,
- developed aesthetic rewarding diligence reports and tasks within their own learning.

Course description

The theory of long lines. Electromagnetic field (physical definition). Lorentz force. The electrostatic field. Current flow field. The magnetostatic field. Energy and power in the system of charged bodies. Energy and power circuits in the system. The electromagnetic field varying in time. Quasi-stationary condition. The law of electromagnetic induction. Maxwell's equations. Electrodynamic potentials. Electromagnetic waves. Harmonic field in the electrical conductive, lossy and perfect dielectric. Energy flux, Poynting vector. Radiation. Hertz dipole.

Basic bibliography:

- 1. Krakowski M.: "Elektrotechnika teoretyczna. Tom 1", PWN, Warszawa 1995.
- 2. Krakowski M.: "Elektrotechnika teoretyczna. Tom 2", PWN, Warszawa 1995.
- 3. Kozłowski J., Machczyński W.: "Podstawy elektromagnetyzmu", Wydawnictwo Politechniki Poznańskiej, Poznań 1996.
- 4. Kozłowski J., Machczyński W.: "Zadania z podstaw elektromagnetyzmu", Wydawnictwo Politechniki Poznańskiej, Poznań 1997.
- 5. Chmielewski A., Poltz J.: "Zbiór zadań z teorii pola elektromagnetycznego", Wydawnictwo Politechniki Poznańskiej, Poznań
- 6. Frąckowiak J., Nawrowski R., Zielińska M.: "Podstawy elektrotechniki. Laboratorium", Wydawnictwo Politechniki Poznańskiej, Poznań 2011.

Additional bibliography:

- 1. Guru B. S., Hiziroglu H. R.: "Electromagnetic field theory fundamentals", PWS Publishing Company, Boston 1998.
- 2. Bolkowski S.: "Teoria obwodów elektrycznych", WNT, Warszawa 1998.
- 3. Czarnywojtek P., Kozłowski J., Machczyński W.: "Elektromagnetyzm" Wydawnictwo PWSZ Kalisz, Kalisz 2011.
- 4. Czarnywojtek P., Kozłowski J., Machczyński W.: "Zbiór zadań z elektromagnetyzmu, Skrypt Wyd. PWSZ Kalisz, Kalisz 2009

Result of average student's workload

Activity	Time (working hours)
1. participation in class lectures	30
2. participated in exercises auditorium	15
3. participation in laboratory classes	15
4. preparation and development of laboratory reports	19
5. participate in the consultations on the lecture and exercise	15
6. exam preparation	24
7. participation in the exam	4
8. preparation for colloquia	24
9. participate in the consultations on the lab	5

Student's workload

Source of workload	hours	ECTS
Total workload	151	6
Contact hours	84	3
Practical activities	39	1